Skip to main content
< Back to news
The researchers from the CNAG-CRG Holger Heyn and Giovanni Iacono (Photo: CNAG-CRG).
 06.06.2018

New tool enables big-scale analysis of single cells

A group of scientists of the National Centre for Genomic Analysis (CNAG-CRG) at Barcelona Science Park, the Pompeu Fabra University (UPF) and the and the Spanish Biomedical Research Consortium on Rare Diseases (CIBERER), led by Holger Heyn, presents a sophisticated computational framework to analyze single-cell gene expression levels, scalable to process millions of individual cells. The work, published in the current issue of the scientific journal Genome Research, shows for the first time a tool capable of analyzing such large single-cell RNAseq dataset. This dramatically extends the limits of single-cell genome research.

 

All the cells in a human body share the same genome but each cell has the potential to become specific in a tissue or organ due to gene expression. Scientists worldwide are looking at what differentiates one cell from another. One of the current challenges of genome research is to analyze many individual cells in order to find and to identify those differences. The analysis of individual cell using single-cell RNA sequencing has been crucial to face this challenge and revolutionized our understanding of the complexity of tissues, organs and organisms. Looking at gene expression of one cell at a time, scientists are now able to describe a sample’s heterogeneity at unprecedented resolution and without prior knowledge of its composition.

Accordingly, large-scale single-cell projects led to the identification of previously unknown cell types and to the drawing of comprehensive cellular maps of organisms. Within the framework of the Human Cell Atlas project, researchers aim at creating an atlas of all cell types that make up a human body. However, such studies create massive amounts of sequencing data and analyzing large datasets are a major challenge.

One of the largest single-cell studies with 1.3 million individual cells

A group of scientists of the CNAG-CRG, in collaboration with researchers from the University Pompeu Fabra (UPF) and the Spanish Biomedical Research Consortium on Rare Diseases (CIBERER), has now developed an efficient computational framework that enabled processing, analysis and interpretation of such big-scale single-cell experiments. The group illustrated the power of their strategy by analyzing one of the largest single-cell studies with 1.3 million individual cells of the developing mouse brain.

“BigSCale is extremely powerful in identifying cell type specific genes, which greatly helps in the downstream interpretation of experiments” says Holger Heyn, CNAG-CRG’s Single Cell Genomics team leader and senior author of the study. The novelty of the analytic tool named “BigSCale” lies in a numerical model that sensitively determines differences between single cells. Having charted how individual cells differ from each other, they can be grouped together into populations of cells to describe the cellular complexity of a given tissue

In addition, the tool was designed to tackle future challenges of large datasets. “The costs to derive single-cell profiles are decreasing and we are seeing studies of increasing cell numbers” adds Dr. Heyn. 

With the new tool in hand the group analyzed one of the largest single-cell gene expression dataset of 1.3 million cells, a resource publically available from 10x Genomics. “BigSCale allowed us to look deep into the developmental processes of the mouse brain and to characterize even rare neuronal cell types” commented Giovanni Iacono, the first author of the work. 

►Reference article:

Iacono et al. “bigSCale: an analytical framework for big-scale single-cell data“. Genome Research. 2018. DOI: 10.1101/gr.230771.117 

►For further information: CNAG-CRG website [+]